
Package: CommKern (via r-universe)
September 11, 2024

Version 1.0.1

Title Network-Based Communities and Kernel Machine Methods

Description Analysis of network community objects with applications to
neuroimaging data. There are two main components to this
package. The first is the hierarchical multimodal spinglass
(HMS) algorithm, which is a novel community detection algorithm
specifically tailored to the unique issues within brain
connectivity. The other is a suite of semiparametric kernel
machine methods that allow for statistical inference to be
performed to test for potential associations between these
community structures and an outcome of interest (binary or
continuous).

Depends R (>= 4.0.0)

License GPL (>= 2)

Encoding UTF-8

URL https://github.com/aljensen89/CommKern

Language en-us

LazyData true

Imports ggnewscale, ggplot2, gridExtra, Matrix, RColorBrewer, reshape2

Suggests knitr, matrixcalc, pheatmap, rmarkdown

RoxygenNote 7.2.1

VignetteBuilder knitr

Repository https://aljensen89.r-universe.dev

RemoteUrl https://github.com/aljensen89/commkern

RemoteRef HEAD

RemoteSha 82f9840ba697b86e00bd26c9f03f7500d51c131e

1

https://github.com/aljensen89/CommKern

2 Contents

Contents

adj_RI . 3
CommKern . 4
community_allegiance . 4
community_plot . 5
compute_modularity_matrix . 7
compute_multimodal_mod . 7
consensus_similarity . 8
count_pairs . 9
degree . 10
entropy . 11
ext_distance . 11
find_start_temp . 12
get_weights . 13
group_adj_perturb . 14
group_network_perturb . 15
ham_distance . 17
heatbath_multimodal . 18
hms . 19
kernel . 20
matrix_plot . 21
matrix_to_df . 22
NMI . 23
purity . 24
SBM_net . 25
score_cont_nonparam . 25
score_cont_semiparam . 27
score_log_nonparam . 29
score_log_semiparam . 30
simasd_array . 32
simasd_comm_df . 32
simasd_covars . 33
simasd_hamil_df . 33
simnet_df_perturb . 34
sort_pairs . 35
subset_matrix_to_df . 36
tr . 36
up_low . 37
zrand . 37

Index 39

adj_RI 3

adj_RI Adjusted Rand Index (ARI)

Description

Description of the adjusted Rand Index function.

Usage

adj_RI(a, b)

Arguments

a a vector of classifications; this must be a vector of characters, integers, numerics,
or a factor, but not a list.

b a vector of classifications

Details

In information theory, the Rand Index (also called the Rand Measure) is a measure of the similarity
between two data clusterings or classifications. If N is the set of elements and X and Y are the
partition of N into n subsets, then the Rand Index is composed of four subsets: (a) the number of
pairs of elements in N that are in the same subset in in X and the same subset in Y; (b) the number of
pairs of elements in N that are in different subsets in X and different subsets in Y; (c) the number of
pairs of elements in N that are in the same subset in X but different subsets in Y; and (d) the number
of pairs of elements in N that are in different subsets in X but the same subset in Y. The adjusted
Rand Index is the corrected-for-chance version of the Rand Index, which establishes a baseline by
using the expected similarity of all pairwise comparisons between clusterings specified by a random
model. The ARI can yield negative results if the index is less than the expected index.

Value

a scalar with the adjusted Rand Index (ARI)

See Also

NMI, purity

Examples

set.seed(7)
x <- sample(x = rep(1:3, 4), 12)

set.seed(18)
y <- sample(x = rep(1:3, 4), 12)

adj_RI(x,y)

4 community_allegiance

CommKern CommKern

Description

The CommKern package provides a streamlined implementation in the design and analysis of net-
work community structures with specific applications to neuroimaging data. The hierarchical mul-
timodal spinglass (HMS) algorithm has been developed as a novel community detection algorithm,
while the semiparametric kernel machine methods allow for statistical inference to be performed
to test for potential associations between these community structures and an outcome of interest,
whether binary or continuous.

This package was part of Alexandria Jensen’s Ph.D. dissertation which was overseen by her advisor
Debashis Ghosh. Peter DeWitt provided extensive mentorship on the creation of this package.

community_allegiance Community Allegiance

Description

Description of the community allegiance function.

Usage

community_allegiance(comm_matrix)

Arguments

comm_matrix a matrix whose first column is the node label/id and all subsequent columns are
different partitions

Details

This function calculates the community allegiance of each node in a network. For node i, the
stability of its allegiance to community A is calculated as the number of times where node i belongs
to community A, divided by the total number of runs. This measure is bounded in [0,1], where
higher values of stability indicate that a node belong to a single community across a greater number
of runs.

The function returns a square matrix whose values are bounded in [0,1], where higher values in the
off diagonal indicate that the two nodes belong to the same community over a higher proportion of
partitions.

Value

a matrix whose values are bounded in [0,1], where higher values in the off diagonal indicate that
the two nodes belong to the same community over a higher proportion of runs.

community_plot 5

Examples

set.seed(7)
x <- sample(x = rep(1:3, 4), 12)

set.seed(18)
y <- sample(x = rep(1:3, 4), 12)

set.seed(3)
z <- sample(x = rep(1:3, 4), 12)

xyz_comms <- data.frame(id=seq(1:length(x)),x_comm=x,y_comm=y,z_comm=z)
xyz_alleg <- community_allegiance(xyz_comms)

xyz_melt <- reshape2::melt(xyz_alleg)

ggplot2::ggplot(data = xyz_melt) +
ggplot2::theme_minimal() +
ggplot2::aes(x = as.factor(Var1), y = as.factor(Var2), fill = value) +
ggplot2::geom_tile() +
ggplot2::xlab('Node') + ggplot2::ylab('Node') +
ggplot2::ggtitle('Community Allegiance Example') +
ggplot2::scale_fill_gradient2(

low = 'navy',
high = 'goldenrod1',
mid = 'darkturquoise',
midpoint = 0.5,
limit = c(0, 1),
space = 'Lab',
name='')

community_plot Communities by layer plot

Description

Generate a graphical representation of the communities and layers.

Usage

community_plot(x, ...)

Arguments

x a spinglass_net object created by hms

... additional arguments from other methods

6 community_plot

Details

This is an ancillary function that creates the plots seen in the manuscript, with a heatmap-style plot
on the top panel, derived from a network adjacency matrix, and a community assignment plot on
the bottom panel, separated by layer.

Value

a gtable object

See Also

link{hms}

Examples

data(SBM_net)

plot with max of two layers
SBM_netcomm <- hms(

input_net = SBM_net,
spins = 4,
alpha = 0,
coolfact = 0.90,
tol = 0.05,
max_layers = 2
)

community_plot(SBM_netcomm)

plot with three layers
don't run automatically on CRAN; > 5 seconds
SBM_netcomm <- hms(

input_net = SBM_net,
spins = 4,
alpha = 0,
coolfact = 0.90,
tol = 0.05,
max_layers = 3
)

community_plot(SBM_netcomm)

compute_modularity_matrix 7

compute_modularity_matrix

Compute modularity matrix

Description

Description of the compute modularity matrix function.

Usage

compute_modularity_matrix(net)

Arguments

net a spinglass_net object (see matrix_to_df for more details)

Details

Calculates the modularity matrix, which is the difference between the observed adjacency matrix
and the expected adjacency matrix (from a null model). This is only computed for the main compo-
nent of network information, not accounting for the guidance. For neuroimaging application, this
function would be computing the modularity matrix for the functional connectivity aspect of the
network object. The function takes in a network object and returns the modularity matrix.

Value

mod_matrix

See Also

matrix_to_df

compute_multimodal_mod

Compute multimodal modularity matrix

Description

Description of the compute multimodal modularity matrix function.

Usage

compute_multimodal_mod(mod_matrix, net, communities, alpha)

8 consensus_similarity

Arguments

mod_matrix the modularity matrix output from the compute_modularity_matrix function

net a network object in list form (see the matrix_to_df function for more details)

communities the vector of node assignments to communities

alpha a double parameter balancing the use of the guidance matrix in modularity cal-
culation

Details

Calculates the multimodal version of the modularity matrix, which is detailed in the accompanying
manuscript as the following: ∑

i ̸=j

Mijδ(Ci, Cj)− α
∑
i̸=j

Sijδ(Ci, Cj).

This function incorporates both the modularity matrix calculated from the compute_modularity_matrix
function and adds the additional component of a guidance matrix. The alpha parameter controls the
extent to which the guidance matrix influences the modularity, where alpha=0 means the function
reverts to the typical modularity calculation and alpha > 0 allows for some influence of the guidance
matrix. The guidance matrix will not penalize the modularity if two nodes are not connected within
it; it will only decrease the modularity if the two nodes have guidance information. The function
takes in a network object, the mod_matrix output from compute_modularity_matrix, a vector of
communities, and a parameter alpha and returns the multimodal modularity matrix.

Value

multimodal modularity matrix

See Also

matrix_to_df, compute_modularity_matrix

consensus_similarity Consensus Similarity

Description

Description of the consensus similarity function.

Usage

consensus_similarity(comm_matrix)

Arguments

comm_matrix a matrix whose columns are different partition and whose rows are nodes within
a network

count_pairs 9

Details

This function identifies a single representative partition from a set of partitions that is the most
similar to the all others. Here, similarity is taken to be the z-score of the Rand coefficient.

Value

the consensus partition determined by the maximum average pairwise similarity

Examples

set.seed(7183)
x <- sample(x = rep(1:3, 4), 12)

y <- sample(x = rep(1:3, 4), 12)

z <- sample(x = rep(1:3, 4), 12)

xyz_comms_mat <- matrix(c(x,y,z),nrow=length(x),ncol=3)
consensus_similarity(xyz_comms_mat)

count_pairs Count pairs

Description

Description of the count pairs function.

Usage

count_pairs(a, b, order)

Arguments

a a vector of classifications

b a vector of classifications

order a vector of permutations (coming from the order() function in base R)

Details

A function to count pairs of integers or factors and identify the pair counts

10 degree

Value

a list of five different vectors:

• pair_nb: a vector containing counts of nodes within all possible classification pairs from
partitions a and b

• pair_a: a vector of the same length as pair_nb, specifying the order of classifications in
pair_nb from partition a

• pair_b: a vector of the same length as pair_nb, specifying the order of classifications in
pair_nb from partition b

• a_nb: a vector containing counts of nodes within each class for partition a

• b_nb: a vector containing counts of nodes within each class for partition b

degree Node degree calculation

Description

Description of the node degree calculation function.

Usage

degree(adj_matrix_func, adj_matrix_str, vertex_df)

Arguments

adj_matrix_func

the adjacency matrix for functional connectivity

adj_matrix_str the adjacency matrix for structural connectivity

vertex_df a data frame of node (or vertex) information

Details

This is an ancillary function that calculates the functional and structural degree of each network
node using the functional and structural adjacency matrices, respectively.

Value

a data frame to be incorporated into the network object

entropy 11

entropy Entropy

Description

Description of the entropy function.

Usage

entropy(a, b)

Arguments

a a vector of classifications; this must be a vector of characters, integers, numerics,
or a factor, but not a list.

b a vector of classifications

Details

A function to compute the empirical entropy for two vectors of classifications and the joint entropy

Value

a list of four objects:

• uv the joint entropy

• u the conditional entropy of partition a

• v the conditional entropy of partition b

• sort_pairs the output from the sort_pairs function

See Also

sort_pairs

ext_distance Extrinsic evaluation distance matrix creation

Description

Description of the extrinsic evaluation distance matrix creation function.

Usage

ext_distance(comm_df, variant = c("NMI", "adj_RI", "purity"))

12 find_start_temp

Arguments

comm_df a data frame whose columns are different partitions. All partitions must have the
same set of nodes in order for this function to work and this data frame should
exclude a node ID column for ease of computation.

variant a string in (’NMI’, ’Adj_RI’, ’purity’) that calculates different extrinsic cluster
evaluation metrics.

Details

This function creates a distance matrix using the community output values from any community
detection algorithm, such as the hierarchical multimodal spinglass algorithm. Because extrinsic
evaluation metrics for clustering algorithms use the underlying idea of similarity, distance is cal-
culated as (1-similarity). The use of distance ensures that the distance matrix will be positive and
semi-definite, a requirement for its use in the kernel function.

Value

A m x m (m is the number of partitions) extrinsic evaluation distance matrix to be used as input for
the kernel function

See Also

adj_RI, NMI, and purity

Examples

x <- c(2,2,3,1,3,1,3,3,2,2,1,1)
y <- c(3,3,2,1,1,1,1,2,2,3,2,3)
z <- c(1,1,2,3,2,3,2,1,1,2,3,3)

xyz_comms <- data.frame(x_comm = x, y_comm = y, z_comm = z)
ext_distance(xyz_comms, variant = 'NMI')
ext_distance(xyz_comms, variant = 'adj_RI')
ext_distance(xyz_comms, variant = 'purity')

find_start_temp Starting temperature

Description

Description of the starting temperature function.

Usage

find_start_temp(net, mod_matrix, spins, alpha, ts)

get_weights 13

Arguments

net a spinglass_net object
mod_matrix mod_matrix
spins spins
alpha a double parameter balancing the use of the guidance matrix in modularity cal-

culation
ts the starting temperature for the search, set to 1 within the algorithm

Details

Within the spinglass algorithm, we would like to start from a temperature with at least 95 of all pro-
posed spin changes accepted in 50 sweeps over the network. The function returns the temperature
found.

Value

the starting temperature that meets the criteria specified above

get_weights Simulated network edge weights

Description

Description of the simulated network edge weights function.

Usage

get_weights(network_df, wcr, bcr, bfcr = NA, fuzzy_comms = NA)

Arguments

network_df a data frame containing information about network nodes, their community as-
signment, and all node dyads, coming from simnet_df_perturb

wcr within community edge weights, sampled from a beta distribution; for example,
c(8,8) will ask for the within community edge weights to be sampled from a
Beta(8,8) distribution

bcr between community edge weights, sampled from a beta distribution; for exam-
ple, c(1,8) will ask for the between community edge weights to be sampled from
a Beta(1,8) distribution

bfcr fuzzy community edge weights, sampled from a beta distribution; for example,
c(4,8) will ask for the fuzzy community edge weights to be sampled from a Beta
(4,8) distribution

fuzzy_comms the communities for which their distinction is ’fuzzy,’ or not as distinct; fuzzy
communities tend to have higher between community edge weights; for exam-
ple, c(’comm_a’,’comm_c’) will create a fuzzy distinction between communi-
ties a and c

14 group_adj_perturb

Details

This is an ancillary function that creates a vector of edge weights sampled from Beta distributions.
Within and between community edge weights are each sampled from a distinct Beta distribution. If
’fuzzy’ communities wish to be created, a third Beta distribution is specified and the communities
for which their distinction is ’fuzzy’ also needs to be specified. This vector of edge weights is then
passed to group_network_perturb to create the final simulated network object.

Value

a vector of edge weights associated with the node dyads from the network data frame

group_adj_perturb Group adjacency matrices

Description

Description of the simulated group adjacency matrices function.

Usage

group_adj_perturb(group_network_list, n_nets, n_nodes)

Arguments

group_network_list

the output from group_network_perturb, which is a list of data frames de-
tailing nodes, community assignments of each node, and edge weights between
each dyad of nodes

n_nets the number of networks simulated

n_nodes the number of nodes in each simulated network (will be the same across all
networks)

Details

This function takes the output from the group_network_perturb function, which is a list of data
frames summarizing each simulated network, and creates an array of adjacency matrices. These
adjacency matrices can then be used as input to any community detection algorithm (such as the
hierarchical multimodal spinglass algorithm, hms).

Value

an array of adjacency matrices of dimension (n_nets x n_nodes x n_nodes)

See Also

group_network_perturb, hms

group_network_perturb 15

Examples

Example 1
sim_nofuzzy <-

group_network_perturb(
n_nodes = 45,
n_comm = 3,
n_nets = 3,
perturb_prop = 0.1,
wcr = c(8, 8),
bcr = c(1.5, 8)

)

nofuzzy_adj <-
group_adj_perturb(sim_nofuzzy, n_nets = 3, n_nodes = 45)

if (require(pheatmap)) {
pheatmap::pheatmap(

nofuzzy_adj[1,,],
treeheight_row = FALSE,
treeheight_col = FALSE

)
}

Example 2
sim_fuzzy <-

group_network_perturb(
n_nodes = 45,
n_comm = 3,
n_nets = 3,
perturb_prop = 0.1,
wcr = c(8, 8),
bcr = c(1.5, 8),
bfcr = c(3, 8),
fuzzy_comms = c('comm_b','comm_c')

)

fuzzy_adj <-
group_adj_perturb(sim_fuzzy, n_nets = 3, n_nodes = 45)

if (require(pheatmap)) {
pheatmap::pheatmap(

fuzzy_adj[2,,],
treeheight_row = FALSE,
treeheight_col = FALSE

)
}

group_network_perturb Simulated group networks

16 group_network_perturb

Description

Description of the simulated group networks function.

Usage

group_network_perturb(
n_nodes,
n_comm,
n_nets,
perturb_prop,
wcr,
bcr,
bfcr = NA,
fuzzy_comms = NA

)

Arguments

n_nodes the number of nodes in each simulated network (will be the same across all
networks)

n_comm the number of communities to be simulated in each network (will be the same
across all networks)

n_nets the number of networks to simulate

perturb_prop the proportion of network nodes to randomly alter their community assignment
within each network

wcr within community edge weights, sampled from a beta distribution; for example,
c(8,8) will ask for the within community edge weights to be sampled from a
Beta(8,8) distribution

bcr between community edge weights, sampled from a beta distribution; for exam-
ple, c(1,8) will ask for the between community edge weights to be sampled from
a Beta(1,8) distribution

bfcr fuzzy community edge weights, sampled from a beta distribution; for example,
c(4,8) will ask for the fuzzy community edge weights to be sampled from a Beta
(4,8) distribution

fuzzy_comms the communities for which their distinction is ’fuzzy,’ or not as distinct; fuzzy
communities tend to have higher between community edge weights; for exam-
ple, c(’comm_a’,’comm_c’) will create a fuzzy distinction between communi-
ties a and c

Details

This function creates a list of simulated networks, of which each network is in a data.frame format,
which describes describes the community assignment for each node in the network, and simulates
the edge weights based on whether the node dyad is: (a) within the same community; (b) between
different communities, or (c) between different communities, but designated as ’fuzzy’ in their
distinction from one another.

ham_distance 17

The function returns a list of data.frames detailing the nodes, node dyads, community assignments,
and edge weights for all dyads in each simulated network.

Value

a list of network data.frames containing nodes, their community assignment, node dyads, and edge
weights

Examples

sim_nofuzzy <-
group_network_perturb(
n_nodes = 45,
n_comm = 3,
n_nets = 3,
perturb_prop = 0.1,
wcr = c(8, 8),
bcr = c(1.5, 8)

)
head(sim_nofuzzy[[1]])

sim_fuzzy <-
group_network_perturb(

n_nodes = 45,
n_comm = 3,
n_nets = 3,
perturb_prop = 0.1,
wcr = c(8, 8),
bcr = c(1.5, 8),
bfcr = c(3, 8),
fuzzy_comms = c('comm_b', 'comm_c')

)
head(sim_fuzzy[[2]])

ham_distance Hamiltonian distance matrix creation

Description

Description of the Hamiltonian distance matrix creation function.

Usage

ham_distance(hamil_df)

Arguments

hamil_df a data frame containing two columns, one for network ID and another containing
Hamiltonian values

18 heatbath_multimodal

Details

This function creates a distance matrix using the Hamiltonian output values from a community
detection algorithm that implements a Hamiltonian value, such as the hierarchical multimodal sp-
inglass algorithm. To ensure a positive, semi-definite matrix (as required for the kernel function),
the absolute difference between Hamiltonian values is calculated.

The function returns an m x m matrix (where m is the number of networks) to be used as input for
the kernel function.

Value

the Hamiltonian distance matrix to be used as input for the kernel function

See Also

hms

Examples

hamil_df <- data.frame(id = seq(1:8),
ham = c(-160.5375, -167.8426, -121.7128, -155.7245,

-113.9834, -112.5262, -117.9724, -171.374))

ham_distance(hamil_df)

heatbath_multimodal Multimodal heatbath algorithm

Description

Description of the multimodal heatbath algorithm function.

Usage

heatbath_multimodal(net, mod_matrix, spins, alpha, temp, max_sweeps)

Arguments

net a hms_network object

mod_matrix mod_matrix

spins spins

alpha a double parameter balancing the use of the guidance matrix in modularity cal-
culation

temp a double parameter found using the find_start_temp() function

max_sweeps an integer parameter of the maximum number of sweeps allowed at each tem-
perature

hms 19

Details

This is one of the two workhorse functions for the algorithm. The heatbath algorithm selects a
network node at random, calculates the multimodal modularity for the current configuration, and
then switches its community assignment to each possible community. If the modularity of this
iterated configuration is less than the current configuration, the new configuration is accepted and
the algorithm moves on to the next randomly chosen node. If this is not the case, the node is
moved to the new community assignment with some probability, which is a function of the current
modularity value, the iterated value, and the system’s temperature. Once the algorithm finishes with
the randomly chosen node, this counts as a sweep. A new sweep occurs, with the same steps taken
as above, until the sweep number maxes out (usually set to 50 to balance computation time with
robustness).

Value

acceptance value of the algorithm for the given temperature

hms Hierarchical multimodal spinglass algorithm

Description

Description of the hierarchical multimodal spinglass algorithm function.

Usage

hms(input_net, spins, alpha, coolfact, tol, max_layers)

Arguments

input_net a spinglass_net object (see matrix_to_df for more details)

spins an integer indicating the maximum number of spins, or communities, that can
be used

alpha a double parameter balancing the use of the guidance matrix in modularity cal-
culation

coolfact a double parameter that indicates how quickly (or slowly) to cool the heatbath
algorithm, typically set to be 0.95-0.99

tol a double parameter that indicates the tolerance level of accepting the proposed
changes within a temperature; at the end of each sweep, the number of proposed
changes to the partition is assessed to see if it exceeds a threshold determined as
a function of tol and spins, typically set to be 0.01-0.05

max_layers an integer parameter that specifies the maximum number of layers of communi-
ties within the network

20 kernel

Details

This is the main function of the algorithm. After running checks on the input parameters, the
algorithm begins on the first layer of the network, finding the optimal configuration of nodes to
communities using the heatbath algorithm. Once the community assignments have been finalized,
the set of nodes within each of these communities is broken up and become their own subnetworks,
on which the algorithm is applied again to get further subnetwork community assignments. This
continues until the maximum number of layers is reached.

Value

a list of two components: comm_layers_tree, a dataframe whose first column is the node id and
all subsequent columns are the partitioning of the nodes to communities across the number of pre-
specified layers; and best_hamiltonian, a vector of the optimized Hamiltonian values for each run
of the algorithm

See Also

matrix_to_df, community_plot

Examples

hms_object <-
hms(input_net = SBM_net,

spins = 4,
alpha = 0,
coolfact = 0.90,
tol = 0.05,
max_layers = 1)

str(hms_object)
str(hms_object$comm_layers_tree)
str(hms_object$net)

identical(SBM_net, hms_object$net)
hms_objectnetvertexes

community_plot(hms_object)

kernel Distance-based kernel

Description

Description of the distance-based kernel function

Usage

kernel(mat, rho)

matrix_plot 21

Arguments

mat a distance-based matrix

rho a bandwidth/scaling parameter whose optimal value is solved for within the
larger score function

Details

This is an ancillary function that is passed into the score function, used for calculating the distance-
based kernel.

The function returns an m x m matrix (where m is the number of networks) to be used as input for
the kernel function.

Value

the value of the kernel

matrix_plot Functional and Structural Matrix Plot

Description

Provide a graphical representation of the functional and structural matrices within a spinglass_net
object.

Usage

matrix_plot(x, ...)

Arguments

x a spinglass_net object

... additional arguments from other methods

Value

a gtable object

Examples

data(SBM_net)

matrix_plot(SBM_net)

22 matrix_to_df

matrix_to_df Convert matrices to dataframe list for network

Description

Description of the convert matrices to data frame list for network function.

Usage

matrix_to_df(func_mat, str_mat)

Arguments

func_mat a square, symmetric matrix to be used as the main input for the hms algorithm.
For brain connectivity, this will be a representation of functional (e.g., BOLD)
connectivity.

str_mat a square, symmetric matrix to be used as the guidance input for the hms algo-
rithm. For brain connectivity, this will be a representation of structural (e.g.,
white matter) connectivity.

Details

This is an ancillary function that creates a data frame list for the initial network. This is the form of
the network used for the spinglass algorithm

Value

A list containing the functional matrix, structural matrix, a data frame of the functional edge
weights, a data frame of the structural edge weights, and nodal information (functional degree,
structural degree, community assignment, and label information)

Examples

Using the example data SBM_net$func_matrix and SBM_net$str_mat
net <- matrix_to_df(SBM_net$func_mat, SBM_net$str_mat)
str(net)
identical(net, SBM_net)

NMI 23

NMI Normalized mutual information (NMI)

Description

Description of the normalized mutual information function.

Usage

NMI(a, b, variant = c("max", "min", "sqrt", "sum", "joint"))

Arguments

a a vector of classifications; this must be a vector of characters, integers, numerics,
or a factor, but not a list.

b a vector of classifications

variant a string in (’max’, ’min’, ’sqrt’, ’sum’, ’joint’) that calculates different variants
of the NMI. The default use is ’max’.

Details

In information theory, the mutual information (MI) of two random variables is a measure of the
mutual dependence between two variables, or the quantification of the ’amount of information’
obtained about one random variable by observing the other random variable. The normalization of
the MI score scales the results between 0 (no mutual information) and 1 (perfect correlation). The
five options for the variant - max, min, square root, sum, and joint - all relate to the denominator of
the NMI = MI / D.

Value

a scalar with the normalized mutual information (NMI).

See Also

adj_RI, purity

Examples

x <- c(1, 3, 1, 2, 3, 3, 3, 2, 1, 2, 1, 2)
y <- c(1, 1, 2, 3, 2, 1, 3, 1, 2, 3, 3, 2)

NMI(x, y, variant = 'max')
NMI(x, y, variant = 'min')
NMI(x, y, variant = 'sqrt')
NMI(x, y, variant = 'sum')
NMI(x, y, variant = 'joint')

x <- c("A", "A", "A", "A", "B", "C", "A", "B", "B", "C")

24 purity

y <- c("B", "A", "A", "A", "C", "C", "B", "C", "D", "D")
NMI(x, y, variant = 'max')
NMI(x, y, variant = 'min')
NMI(x, y, variant = 'sqrt')
NMI(x, y, variant = 'sum')
NMI(x, y, variant = 'joint')

purity Purity

Description

Description of the purity function.

Usage

purity(a, b)

Arguments

a a vector of classifications; this must be a vector of characters, integers, numerics,
or a factor, but not a list.

b a vector of classifications

Details

In information theory, purity is an external evaluation criterion of cluster quality. It is the percent
of the total number of objects (data points) that were classified in the range of [0,1]. Because we
lack a ground truth partition, a harmonic mean is calculated, where we consider partition a to be the
ground truth and then consider partition b to be the ground truth.

Value

a scalar with the harmonic mean of the purity

See Also

adj_RI, NMI

Examples

set.seed(7)
x <- sample(x = rep(1:3, 4), 12)

set.seed(18)
y <- sample(x = rep(1:3, 4), 12)

purity(x,y)

SBM_net 25

SBM_net Simulated functional and structural connectivity with nested hierar-
chical community structure

Description

A dataset containing multimodal network information simulated to emulate functional and struc-
tural brain connectivity data with a nested hierarchical community structure. This dataset is a list
containing five components in a format used as an input to the hms function. The components, and
their associated variables, are as follows:

Usage

SBM_net

Format

A list containing five components:

func_edges a dataframe containing 1233 rows and 3 columns: func_start_node, func_end_node,
and func_weight. This dataframe describes the pairwise functional edge weights between
nodes.

str_edges a dataframe containing 453 rows and 3 columns: str_start_node, str_end_node, and
str_weight. This dataframe describes the pairwise structural edge weights between nodes.
There are fewer rows to this dataframe than func_edges as structural connectivity tends to be
sparser than functional connectivity.

vertexes a dataframe containing 80 rows and 5 columns: node_id, node_label, func_degree, str_degree,
and community. The degree of a node is the sum of all edge weights connected to the node. In
this simulated network, node_label is left as NA but, for other networks, a specific label may
be used to denote additional information about the node. The community variable is left blank
but is used by the hms algorithm.

func_matrix an 80 x 80 matrix in the style of a network adjacency matrix. It contains the same
information as func_edges, just in a wide, rather than long, format.

str_matrix an 80 x 80 matrix in the style of a network adjacency matrix. It contains the same
information as str_edges, just in a wide, rather than long, format.

score_cont_nonparam Nonparametric score function for distance-based kernel and continu-
ous outcome.

Description

Description of the nonparametric score function for distance-based kernel function and continuous
outcome.

26 score_cont_nonparam

Usage

score_cont_nonparam(outcome, dist_mat, grid_gran = 5000)

Arguments

outcome a numeric vector containing the continuous outcome variable (in the same ID
order as dist_mat)

dist_mat a square distance matrix

grid_gran a numeric value specifying the grid search length, preset to 5000

Details

This is the main function that calculates the p-value associated with a nonparametric kernel test of
association between the kernel and continuous outcome variable. A null model (where the kernel is
not associated with the outcome) is initially fit. Then, the variance of Yi|Xi is used as the basis for
the score test,

S (ρ) =
Qτ

(
β̂0, ρ

)
− µQ

σQ
.

However, because ρ disappears under the null hypothesis, we run a grid search over a range of
values of ρ (the bounds of which were derived by Liu et al. in 2008). This grid search gets the
upper bound for the score test’s p-value. This function is tailored for the underlying model

yi = h (zi) + ei,

where h (·) is the kernel function, zi is a multidimensional array of variables, and yi is a continuous
outcome taking values in in the real numbers.

The function returns an numeric p-value for the kernel score test of association.

Value

the score function p-value

References

Liu D, Ghosh D, and Lin X (2008) "Estimation and testing for the effect of a genetic pathway
on a disease outcome using logistic kernel machine regression via logistic mixed models." BMC
Bioinformatics, 9(1), 292. ISSN 1471-2105. doi:10.1186/147121059292.

See Also

hms, ext_distance, ham_distance score_log_semiparam for semiparametric score function of
distance-based kernel functions and binary outcome. score_log_nonparam for nonparametric
score function of distance-based kernel functions and binary outcome. score_cont_semiparam
for semiparametric score function of distance-based kernel function and continuous outcome.

https://doi.org/10.1186/1471-2105-9-292

score_cont_semiparam 27

Examples

data(simasd_hamil_df)
data(simasd_covars)

hamil_matrix <- ham_distance(simasd_hamil_df)

score_cont_nonparam(
dist_mat = hamil_matrix,
outcome = simasd_covars$verbal_IQ,
grid_gran = 5000

)

score_cont_semiparam Semiparametric score function for distance-based kernel and continu-
ous outcome.

Description

Description of the semiparametric score function for distance-based kernel function and continuous
outcome.

Usage

score_cont_semiparam(outcome, covars, dist_mat, grid_gran = 5000)

Arguments

outcome a numeric vector containing the continuous outcome variable (in the same ID
order as dist_mat)

covars a data frame containing the covariates to be modeled parametrically (should
NOT include an ID variable)

dist_mat a square distance matrix

grid_gran a numeric value specifying the grid search length, preset to 5000

Details

This is the main function that calculates the p-value associated with a semiparametric kernel test of
association between the kernel and continuous outcome variable. A null model (where the kernel is
not associated with the outcome) is initially fit. Then, the variance of Yi|Xi is used as the basis for
the score test,

S (ρ) =
Qτ

(
β̂0, ρ

)
− µQ

σQ
.

28 score_cont_semiparam

However, because ρ disappears under the null hypothesis, we run a grid search over a range of
values of ρ (the bounds of which were derived by Liu et al. in 2008). This grid search gets the
upper bound for the score test’s p-value. This function is tailored for the underlying model

yi = xT
i β + h (zi) + ei,

where h (·) is the kernel function, zi is a multidimensional array of variables, xi is a vector or matrix
of covariates, β is a vector of regression coefficients, and yi is a continuous outcome taking values
in the real numbers.

Value

the score function p-value for the kernel score test of association.

References

Liu D, Ghosh D, and Lin X (2008) "Estimation and testing for the effect of a genetic pathway
on a disease outcome using logistic kernel machine regression via logistic mixed models." BMC
Bioinformatics, 9(1), 292. ISSN 1471-2105. doi:10.1186/147121059292.

See Also

hms, ext_distance, ham_distance score_log_semiparam for semiparametric score function of
distance-based kernel functions and binary outcome. score_log_nonparam for nonparametric
score function of distance-based kernel functions and binary outcome. score_cont_nonparam for
nonparametric score function of distance-based kernel function and continuous outcome.

Examples

data(simasd_hamil_df)
data(simasd_covars)

hamil_matrix <- ham_distance(simasd_hamil_df)
covars_df <- simasd_covars[,3:4]

score_cont_semiparam(
outcome = simasd_covars$verbal_IQ,
covars = covars_df,
dist_mat = hamil_matrix,
grid_gran = 5000
)

https://doi.org/10.1186/1471-2105-9-292

score_log_nonparam 29

score_log_nonparam Nonparametric score function for distance-based kernel and binary
outcome

Description

Description of the nonparametric score function for distance-based kernel function and a binary
outcome.

Usage

score_log_nonparam(outcome, dist_mat, grid_gran = 5000)

Arguments

outcome a numeric vector containing the binary outcome variable, 0/1 (in the same ID
order as dist_mat)

dist_mat a square distance matrix

grid_gran a numeric value specifying the grid search length, preset to 5000

Details

This is the main function that calculates the p-value associated with a nonparametric kernel test of
association between the kernel and binary outcome variable. A null model (where the kernel is not
associated with the outcome) is initially fit. Then, the variance of Yi|Xi is used as the basis for the
score test,

S (ρ) =
Qτ

(
β̂0, ρ

)
− µQ

σQ
.

However, because ρ disappears under the null hypothesis, we run a grid search over a range of
values of ρ (the bounds of which were derived by Liu et al. in 2008). This grid search gets the
upper bound for the score test’s p-value. This function is tailored for the underlying model

yi = h (zi) + ei,

where
h (·)

is the kernel function, zi is a multidimensional array of variables, and yi is a binary outcome taking
values in 0, 1.

The function returns an numeric p-value for the kernel score test of association.

Value

the score function p-value

30 score_log_semiparam

References

Liu D, Ghosh D, and Lin X (2008) "Estimation and testing for the effect of a genetic pathway
on a disease outcome using logistic kernel machine regression via logistic mixed models." BMC
Bioinformatics, 9(1), 292. ISSN 1471-2105. doi:10.1186/147121059292.

See Also

hms, ext_distance, ham_distance score_log_semiparam for semiparametric score function of
distance-based kernel functions and binary outcome. score_cont_nonparam for nonparametric
score function of distance-based kernel function and continuous outcome. score_cont_semiparam
for semiparametric score function of distance-based kernel function and continuous outcome.

Examples

data(simasd_hamil_df)
data(simasd_covars)

hamil_matrix <- ham_distance(simasd_hamil_df)

score_log_nonparam(
outcome = simasd_covars$dx_group,
dist_mat = hamil_matrix,
grid_gran = 5000
)

score_log_semiparam Semiparametric score function for distance-based kernel

Description

Description of the semiparametric score function for distance-based kernel function and binary
outcome.

Usage

score_log_semiparam(outcome, covars, dist_mat, grid_gran = 5000)

Arguments

outcome a numeric vector containing the binary outcome variable, 0/1 (in the same ID
order as dist_mat)

covars a dataframe containing the covariates to be modeled parametrically (should NOT
include an ID variable)

dist_mat a square distance matrix

grid_gran a numeric value specifying the grid search length, preset to 5000

https://doi.org/10.1186/1471-2105-9-292

score_log_semiparam 31

Details

This is the main function that calculates the p-value associated with a semiparametric kernel test of
association between the kernel and binary outcome variable. A null model (where the kernel is not
associated with the outcome) is initially fit. Then, the variance of Yi|Xi is used as the basis for the
score test,

S (ρ) =
Qτ

(
β̂0, ρ

)
− µQ

σQ

. However, because ρ disappears under the null hypothesis, we run a grid search over a range of
values of ρ (the bounds of which were derived by Liu et al. in 2008). This grid search gets the upper
bound for the score test’s p-value. This function is tailored for the underlying model

yi = xT
i β + h (zi) + ei,

where h (·) is the kernel function, zi is a multidimensional array of variables, xi is a vector or matrix
of covariates, β is a vector of regression coefficients, and yi is a binary outcome taking values in 0,
1.

The function returns an numeric p-value for the kernel score test of association.

Value

the score function p-value

References

Liu D, Ghosh D, and Lin X (2008) "Estimation and testing for the effect of a genetic pathway
on a disease outcome using logistic kernel machine regression via logistic mixed models." BMC
Bioinformatics, 9(1), 292. ISSN 1471-2105. doi:10.1186/147121059292.

See Also

hms, ext_distance, ham_distance score_log_nonparam for nonparametric score function of
distance-based kernel functions and binary outcome. score_cont_nonparam for nonparametric
score function of distance-based kernel function and continuous outcome. score_cont_semiparam
for semiparametric score function of distance-based kernel function and continuous outcome.

Examples

data(simasd_hamil_df)
data(simasd_covars)

hamil_matrix <- ham_distance(simasd_hamil_df)
covars_df <- simasd_covars[,3:4]

score_log_semiparam(
outcome = simasd_covars$dx_group,
covars = covars_df,
dist_mat = hamil_matrix,
grid_gran = 5000

https://doi.org/10.1186/1471-2105-9-292

32 simasd_comm_df

)

simasd_array Simulated Array

Description

A dataset containing an array of simulated adjacency matrices. The dimensions of each matrix is 80
x 80, for a total of 49 simulated networks. This simulated array is the basis of the simasd_hamil_df
and simasd_comm_df datasets and is complementary to the simasd_covars dataframe.

Usage

simasd_array

Format

An array of dimensions 49 x 80 x 80, denoting matrices for 49 simulated networks, with each
network’s matrix corresponding to an adjacency matrix for an 80 node network.

simasd_comm_df Simulated partitions of nodes to communities from HMS algorithm

Description

A dataset of partitions of nodes to communities from simulated group-level networks with com-
munity structures. This dataset is complementary to the simasd_covars dataset, which contains the
demographic information related to this dataset. For more information on how these group-level
networks were simulated, please refer to the example script titled "beta_simulation_data.set.R".
The variables are as follows:

Usage

simasd_comm_df

Format

A dataframe with 80 rows and 49 columns, where rows correspond to nodes within the simulated
networks and columns correspond to the subject ID.

simasd_covars 33

simasd_covars Simulated demographics dataset modeled of a subset of the prepro-
cessed ABIDE database

Description

A dataset of demographics generated based on summary statistics for a subset of the ABIDE prepro-
cessed database (http://preprocessed-connectomes-project.org/abide/). The variables are as follows:

Usage

simasd_covars

Format

A dataframe with 49 rows and 8 columns:

id a generic ID, an integer value

dx_group diagnostic group (0=control, 1=Autism Spectrum Disorder (ASD)

sex subject sex (0=male, 1=female)

age subject age in years

handedness subject handedness category, a factor with three level (0=right, 1=left, 2=ambidex-
trous)

fullscale_IQ fullscale IQ score, simulated as if administered from the Wechsler Abbreviated Scales
of Intelligence (WASI), an integer value in (50,160)

verbal_IQ verbal IQ component, simulated as if administered from the Wechsler Abbreviated
Scales of Intelligence (WASI), an integer value in (55,160)

nonverbal_IQ nonverbal IQ component, simulated as if administered from the Wechsler Abbrevi-
ated Scales of Intelligence (WASI), an integer value in (53,160)

simasd_hamil_df Simulated Hamiltonian values from HMS algorithm

Description

A dataset of Hamiltonian values from simulated group-level networks with community structure.
This dataset is complementary to the simasd_covars dataset, which contains the demographic in-
formation related to this dataset. For more information on how these group-level networks were
simulated, please refer to the example script titled "beta_simulation_data.set.R". The variables are
as follows:

Usage

simasd_hamil_df

34 simnet_df_perturb

Format

A dataframe with 49 rows and 2 columns:

id a generic ID, corresponding to the id variable in simasd_covars

hamil Hamiltonian value calculated from running the simulated network through the HMS algo-
rithm, a numeric value

simnet_df_perturb Simulated network data frame

Description

Description of the simulated network data frame function.

Usage

simnet_df_perturb(n_nodes, n_comm, n_nets, perturb_prop)

Arguments

n_nodes the number of nodes in each simulated network (will be the same across all
networks)

n_comm the number of communities to be simulated in each network (will be the same
across all networks)

n_nets the number of networks to simulate

perturb_prop the proportion of network nodes to randomly alter their community assignment
within each network

Details

This is an ancillary function that creates a list of data frames, of which each data frame describes the
community assignment for each node in the network. These data frames are used as a starting point
for the edge weights to be added between nodes (see group_network_perturb and get_weights
for more information).

Value

a list of network data frames containing nodes, their community assignment, and node dyads

sort_pairs 35

sort_pairs Sort pairs

Description

Description of the sort pairs function.

Usage

sort_pairs(a, b)

Arguments

a a vector of classifications

b a vector of classifications

Details

A function to sort pairs of integers or factors and identify the pairs

Value

a list of six objects used as the basis to calculate many cluster evaluation metrics, like NMI, ARI,
and the Rand z-score.

• levelsa list of the classes within each of the partitions a and b

• n_ija vector containing counts of nodes within all possible classification pairs from partitions
a and b

• n_i.a vector of the same length as pair_nb, specifying the order of classifications in pair_nb
from partition a

• n_.ja vector of the same length as pair_nb, specifying the order of classifications in pair_nb
from partition b

• pair_aa vector containing counts of nodes within each class for partition a

• pair_ba vector containing counts of nodes within each class for partition b

36 tr

subset_matrix_to_df Convert matrices to list of data frames for subnetworks

Description

Description of the convert matrices to data frame list for subnetworks function.

Usage

subset_matrix_to_df(func_matrix, str_matrix)

Arguments

func_matrix a square, symmetric matrix to be used as the main input for the hms algorithm.
For brain connectivity, this will be a representation of functional (e.g., BOLD)
connectivity.

str_matrix a square, symmetric matrix to be used as the guidance input for the hms algo-
rithm. For brain connectivity, this will be a representation of structural (e.g.,
white matter) connectivity.

Details

This is an ancillary function that creates a data frame list for the subnetworks created using the
multimodal hierarchical spinglass algorithm.

Value

A list of data frame containing the functional matrix, structural matrix, a data frame of the functional
edge weights, a data frame of the structural edge weights, and nodal information (functional degree,
structural degree, community assignment, and label information)

tr Trace

Description

Return the trace of a square matrix

Usage

tr(x, ...)

Arguments

x a square matrix

... arguments passed to sum

up_low 37

Value

The trace, the sum of the diagonal elements, of the square matrix x

up_low Bounds of grid search function

Description

Description of the bounds of grid search function.

Usage

up_low(dist_mat)

Arguments

dist_mat a square distance matrix

Details

This ancillary function finds the upper and lower bounds of the grid search implemented in the
kernel score test.

The function returns an m x m matrix (where m is the number of networks) to be used as input for
the kernel function.

Value

a square matrix of the same dimensions of the input matrix, comprised of the sum square differences.

zrand Rand z-score

Description

Description of the Rand z-score function.

Usage

zrand(part1, part2)

Arguments

part1 a partition of nodes to communities or clusters

part2 a partition of nodes to communities or clusters

38 zrand

Details

This is an ancillary function that calculates the Rand z-score between two partitions, which is used
in the consensus similarity function

Value

the Rand z-score between two partitions

Index

∗ datasets
SBM_net, 25
simasd_array, 32
simasd_comm_df, 32
simasd_covars, 33
simasd_hamil_df, 33

adj_RI, 3, 12, 23, 24

CommKern, 4
community_allegiance, 4
community_plot, 5, 20
compute_modularity_matrix, 7, 8
compute_multimodal_mod, 7
consensus_similarity, 8
count_pairs, 9

degree, 10

entropy, 11
ext_distance, 11, 26, 28, 30, 31

find_start_temp, 12

get_weights, 13, 34
group_adj_perturb, 14
group_network_perturb, 14, 15, 34

ham_distance, 17, 26, 28, 30, 31
heatbath_multimodal, 18
hms, 5, 14, 18, 19, 22, 25, 26, 28, 30, 31, 36

kernel, 20

matrix_plot, 21
matrix_to_df, 7, 8, 19, 20, 22

NMI, 3, 12, 23, 24

purity, 3, 12, 23, 24

SBM_net, 25

score_cont_nonparam, 25, 28, 30, 31
score_cont_semiparam, 26, 27, 30, 31
score_log_nonparam, 26, 28, 29, 31
score_log_semiparam, 26, 28, 30, 30
simasd_array, 32
simasd_comm_df, 32
simasd_covars, 33
simasd_hamil_df, 33
simnet_df_perturb, 13, 34
sort_pairs, 11, 35
subset_matrix_to_df, 36
sum, 36

tr, 36

up_low, 37

zrand, 37

39

	adj_RI
	CommKern
	community_allegiance
	community_plot
	compute_modularity_matrix
	compute_multimodal_mod
	consensus_similarity
	count_pairs
	degree
	entropy
	ext_distance
	find_start_temp
	get_weights
	group_adj_perturb
	group_network_perturb
	ham_distance
	heatbath_multimodal
	hms
	kernel
	matrix_plot
	matrix_to_df
	NMI
	purity
	SBM_net
	score_cont_nonparam
	score_cont_semiparam
	score_log_nonparam
	score_log_semiparam
	simasd_array
	simasd_comm_df
	simasd_covars
	simasd_hamil_df
	simnet_df_perturb
	sort_pairs
	subset_matrix_to_df
	tr
	up_low
	zrand
	Index

